Monocarbaborane anion chemistry. The substantiation of the C-arylated $[PhCB_6H_6]^-$ seven-vertex *closo* cluster anion by single-crystal synchrotron X-ray diffraction analysis

Andreas Franken,^a Daniel L. Ormsby,^{†a} Colin A. Kilner,^a William Clegg,^b Mark Thornton-Pett^a and John D. Kennedy ^{*a}

- ^a The Department of Chemistry of the University of Leeds, Leeds, UK LS2 9JT. E-mail: johnk@chem.leeds.ac.uk
- ^b The Department of Chemistry of the University of Newcastle, Newcastle upon Tyne, UK NE1 7RU

Received 23rd May 2002, Accepted 13th June 2002 First published as an Advance Article on the web 21st June 2002

Single-crystal synchrotron X-ray diffraction analysis of the $[NEt_4]^+$ salt of the $[2-Ph-closo-2-CB_6H_6]^-$ anion, obtained from $[4-Ph-arachno-4-CB_8H_{13}]$ and NEt_3 in refluxing toluene, substantiates the anion as the first structurally characterised seven-vertex monocarbaborane.

The general chemistry of the monocarbaboranes, compared to boranes on one hand and dicarbaboranes on the other, is sparsely investigated.¹ One reason for this has been an absence of convenient synthetic protocols. The Brellochs Reaction² of aldehydes with B₁₀H₁₄ in alkaline solution now gives ready access to ten-vertex {CB₉} residues, which, via cluster-Aufbau and cluster-dismantling reactions, can then effect entries also into eight-vertex $\{CB_7\}$, nine-vertex $\{CB_8\}$, eleven-vertex $\{CB_{10}\}$ and twelve-vertex $\{CB_{11}\}$ systems.²⁻⁶ For example, using the benzaldehyde entry into the {PhCB₉} system as a model, we have recently reported the complete series of closo C-phenylated monocarbaborane anions [1-Ph-closo-1-CB₁₁- H_{11}^{-1} 1, [2-Ph-closo-2-CB₁₀ H_{10}^{-1} 2, [1-Ph-closo-1-CB₉ H_9^{-1} 3a, [2-Ph-closo-2-CB₉H₉]⁻ **3b**, [4-Ph-closo-4-CB₈H₈]⁻ **4** and [1-Ph $closo-1-CB_7H_7$]⁻ 5 (schematic cluster structures I, II, IIIA, IIIB, IV and V respectively).⁴⁻⁶ In the consideration of this sequence, it may be noted that C-arylation of monocarbaborane anions has hitherto often been recognised as a difficult target.7

The next member in this descending sequence is the sevenvertex $[2-Ph-closo-2-CB_6H_6]^-$ anion **6** (schematic cluster structure **VI**). Descriptions of {CB₆} cluster species are essentially unknown,¹ but anion **6** has very recently been tentatively identified by NMR spectroscopy in a product mixture from which the eight-vertex $[1-Ph-closo-1-CB_7H_7]^-$ anion **5** was obtained as the major product.⁵ We can now support this NMR identification by DFT B3LYP/6-31G* geometry optimizations of the

† Current address: Accelrys Ltd., 334 Cambridge Science Park, Cambridge, UK CB4 0WN.

Fig. 1 Crystallographically determined (left) and DFT B3LYP/6-31G* geometry-optimized (right) molecular structures of the [2-Phcloso-2-CB₆H₆]⁻ seven-vertex cluster anion **6**. Selected dimensions in Å are as follows: from the crystallographic determination: C(2)–C(21) 1.492(2), C(2)–B(1) 1.744(2), C(2)–B(3) 1.559(2), C(2)–B(6) 1.555(2), C(2)–B(7) 1.736(2) and interboron distances 1.645(3) to 1.825(3); for the calculated structure: C(2)–C(21) 1.518, C(2)–B(1) 1.753, C(2)–B(3) 1.538, C(2)–B(6) 1.538, and C(2)–B(7) 1.753 and interboron distances 1.611 to 1.798.

molecular structure (Fig. 1, right), and thence by a confirmatory prediction using DFT-GIAO//B3LYP/6-31G* calculations of the boron nuclear shieldings that reasonably match the observed ¹¹B NMR chemical shifts.[‡] The unsubstituted analogue [HCB₆H₆]⁻ has similarly been identifiable very recently in a [HCB₇H₇]⁻ product mixture.⁸ More definitively, however, we now report the unequivocal structural substantiation of the C-phenylated species **6** by single-crystal synchrotron X-ray diffraction work. As far as we are aware this is the first clear structural substantiation in this hitherto elusive {CB₆} monocarbaborane cluster system.

Thus, a solution of [4-Ph-*arachno*-4-CB₈H₁₃] (compound 7, 0.5 g, 2.7 mmol)⁵ and NEt₃ (5 ml) in toluene (15 ml) was heated at reflux for 18 hours under dinitrogen, cooled to room temperature, and the volatile organic solvents removed *in vacuo*. In air, the residue was dissolved in 5% aqueous HCl (50 ml), filtered, and [NEt₄]⁺Cl⁻ (0.5 g, 3.0 mmol) in water (30 ml) added. The resulting white precipitate was filtered off and dried *in vacuo*, and shown by NMR spectroscopy to be a mixture of the [NEt₄]⁺ salts of the [1-Ph-*closo*-1-CB₇H₇]⁻ anion **5** and the new [2-Ph-*closo*-2-CB₆H₆]⁻ anion **6** (combined amount 0.37 g,

J. Chem. Soc., Dalton Trans., 2002, 2807–2808 2807

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2002

DOI: 10.1039/b205016c

ca. 2.2 mmol, ca. 82%) in a ratio of 5: 6 of 60: 40, corresponding to unseparated yields of ca. 50 and 30% respectively. The extreme similarities of the solubility and chromatographic properties of salts of 5 and 6 have so far precluded a clean bulk separation in our hands. However, crystallisation from a concentrated solution in $(CH_3)_2CO$ that was overlayered with a *ca*. five-fold excess of Et₂O gave a mixture of crystals of the $[NEt_4]^+$ salts of both 5 and 6. Manual separation of individual crystals, followed by unit-cell measurements on each using conventional sealed-tube X-radiation, distinguished the salt of 6 (orthorhombic, a = 14.438(3), b = 15.762(3) and c = 16.877(4) Å at 150 K) from that previously established⁵ for the salt of 5 (monoclinic, a = 9.5758(2), b = 16.5323(4), c = 12.2821(3) Å and $\beta = 98.0110(10)^{\circ}$ at 150 K). Crystals of the air-stable [NEt₄]⁺ salt of the anion 6 thus isolated were very small, and required the use of synchrotron X-radiation (wiggler-generated from 2 GeV electrons at 150–250 mA, station 9.8, CCLRC, Daresbury, UK)⁹ for sufficient diffraction intensity for molecular structure determination. The analysis of the diffraction data gave a clean result, with no disorder apparent.

The solid-state structure of anion 6 thus determined (Fig. 1, left)§ clearly mimics the pseudo-gas-phase structure arising from DFT calculations (Fig. 1, right). The only notable difference is in the rotamer angle about the C(cluster)-C(phenyl) bond-axis, but this difference is not significant, as energy barriers to phenyl-group/cluster-group contrarotation will be small¹⁰ and easily overcome by crystal-packing forces. The seven-vertex cluster architecture is that of a pentagonal bipyramidal closed deltahedron, in accord with the Williams-Wade paradigm.¹¹ The all-boron analogue $[closo-B_7H_7]^{2-}$ was recognised some time ago,¹² but has not been structurally characterised, although the perbrominated [closo-B7Br]2 species has,13 and seven-vertex closed dicarbaboranes are well-established.¹ In anion $\mathbf{6}$ the carbon atom takes one of the positions of lower cluster-connectivity four, rather than one of higher cluster-connectivity five, also in accord with longrecognised general behavioural patterns.^{11,14} The identification and substantiation of this new, stable, fundamental monocarbaborane type augurs well for the continued development of monocarbaborane chemistry, for example in an extension of the 'least-coordinating anion' chemistry¹⁵ of the cluster species of *closo* $\{CB_n\}$ character for the study of and application of very acidic systems. We currently plan experimentation to attempt to increase the proportion of anion 6 in the product mixture at the expense of 5, and also to attempt to find conditions for efficient bulk separation and purification.

Acknowledgements

We thank the UK DTI and the UK EPSRC (grant nos. L/49505 and GR/M/83360) for support, and Dr Simon Teat for technical assistance and advice in the synchrotron work.

Notes and references

‡ Measured NMR data for the [2-Ph-*closo*-2-CB₆H₆]⁻ anion 6, $[NEt_4]^+$ salt in (CD₃)₂CO at 294–299 K, ordered as assignment $\delta(^{(11}B)/\text{ppm} [\delta(^{(11}H)/\text{ppm}], \text{ are as follows: BH(3,6) +6.4 [+4.11], BH(4,5) +0.5]}$

[+3.55], BH(1,7) -19.5 [-0.16]; additionally δ (¹H)(Ph) *ca.* +7.39 to +7.03 (5H, compact overlapping multiplet), and δ (¹H)(Et) at +3.47 (8H, quartet), +1.39 (12H, triplet), also δ (¹³C)(Ph) +143.02 (1C), +127.66 (2C), +127.16 (2C) and +124.25 (1C), with δ (¹³C)(cluster) +85.8 and δ (¹³C)(Et) +7.07 and +52.47 ppm. Calculated δ (¹¹B) values by DFT-GIAO//B3LYP/6-31G* are as follows: ¹⁶ B(3,6) +2.8, B(4,5) -2.1 and B(1,7) -19.7 ppm.

§ Crystal data for the [\hat{NEt}_4]⁺ salt of the [2-Ph-*closo*-2-CB₆H₆]⁻ anion **6**: C₁₅H₃₁B₆N: M = 290.27, orthorhombic, colourless rod, $300 \times 30 \times 30 \mu$ m, from (CH₃)₂CO-Et₂O, space group *Pbca*, a = 14.438(3), b = 15.762(3), c = 16.877(4) Å, U = 3840.6(14) Å³, $D_{calc} = 1.004$ Mg m⁻³, Z = 8, $\lambda = 0.6883$ Å, $\mu = 0.052$ mm⁻¹, T = 150(2) K, $R_1 = 0.0701$ for 3385 reflections with $I > 2\sigma(I)$, and $wR_2 = 0.1792$ for all 4073 unique reflections. CCDC reference number 186128; methods and programs were standard.¹⁷ See http://www.rsc.org/suppdata/dt/b2/b205016c/ for crystallographic data in CIF or other electronic format. Crystal data for the [NEt₄]⁺ salt of the [1-Ph-*closo*-1-CB₇H₇]⁻ anion **5** were previously deposited; CCDC reference number 172016.

- 1 See, for example: B. Štíbr, *Chem. Rev.*, 1992, **92**, 225 and references therein.
- 2 B. Brellochs, Abstracts Tenth International Conference on Boron Chemistry, IMEBORON 10, Durham, N. England, 11–15 July, 1999, abstract no. CA-18, p. 82; B. Brellochs, in Contemporary Boron Chemistry, eds. M. G. Davidson, A. K. Hughes, T. B. Marder and K. Wade, Royal Society of Chemistry, Cambridge, England, 2000, pp. 212–214.
- T. Jelínek, B. Štíbr, J. Holub, M. Bakardjiev, D. Hnyk, D. L Ormsby, C. A. Kilner, M. Thornton-Pett, H.-J. Schanz, B. Wrackmeyer and J. D. Kennedy, *Chem. Commun.*, 2001, 1756.
 T. Jelínek, C. A. Kilner, M. Thornton-Pett and J. D. Kennedy,
- 4 T. Jelínek, C. A. Kilner, M. Thornton-Pett and J. D. Kennedy, *Chem. Commun.*, 2001, 1790.
- 5 A. Franken, C. A. Kilner, M. Thornton-Pett and J. D. Kennedy, J. Organomet. Chem., 2002, in press.
- 6 A. Franken, C. A. Kilner, M. Thornton-Pett and J. D. Kennedy, Inorg. Chem. Commun., 2002, in press.
- 7 See, for example: Z. Janoušek, P. R. Craig, C. L. Hilton and J. Michl, *Abstracts Second European Symposium on Boron Chemistry*, *EUROBORON 2*, Dinard, France, 2–7 September 2001, abstract no. P18.
- 8 T. Jelínek, B. Štíbr, J. Holub, M. Bakardjiev, M. Thornton-Pett, J. D. Kennedy, O. L. Tok, W. Milius and B. Wrackmeyer, *Abstracts Second European Symposium on Boron Chemistry, EUROBORON 2*, Dinard, France, 2–7 September 2001, abstract no. P19.
- 9 R. J. Cernik, W. Clegg, C. R. A. Catlow, G. Bushnell-Wye, J. V. Flaherty, G. N. Greaves, I. Burrows, D. J. Taylor, S. J. Teat and M. Hamichi, J. Synchrotron Rad., 1997, 4, 279; J. Bould, W. Clegg, J. D. Kennedy, S. J. Teat and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1997, 2005; W. Clegg, M. R. J. Elsegood, S. J. Teat, C. Redshaw and V. C. Gibson, J. Chem. Soc., Dalton Trans., 1998, 3037.
- 10 D. L. Ormsby, R. Greatrex, B. Štibr and J. D. Kennedy, J. Organomet. Chem., 2000, 614/615, 61–65.
- 11 R. E. Williams, Inorg. Chem., 1971, 1, 210; K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
- 12 F. Klanberg, D. R. Eaton, L. J. Guggenberger and E. L. Muetterties, *Inorg. Chem.*, 1964, 3, 438.
- 13 A. Franken, H. Thomsen and W. Preetz, Z. Naturforsch., Teil B, 1996, 51, 744.
- 14 See, for example: T. Onak, in *Boron Hydride Chemistry*, ed. E. L. Muetterties, Academic, New York, 1973, pp. 349–382.
- 15 See, for example: C. A. Reed, Acc. Chem. Res., 1998, 31, 133.
- 16 Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA, 1998
- 17 SMART, SAINT, SADABS and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA, 1997–2001.